Home
(Japanese)


ライン

Our Laboratory

Members

Research

Publications

Review

Informations

Bookmarks

Home in English

ライン



Sapporo Medical University

Dept. Molecular Medicine



Latest renewal date of this page was March 14, 2005.

RESEARCH SUMMARY 2001-2004

Molecular Medicine

 

******

 

1. Effective gene transfer to human melanomas via integrin-targeted adenoviral vectors.

The utility of recombinant adenoviral vectors (Adv) for gene therapy is limited by their low transduction efficiency and lack of specificity for target cells. The low transduction efficiency is often recognized as due to deficiency of the primary adenoviral receptor, the coxsackievirus-adenovirus receptor (CAR). In this paper, studies of CAR levels on human melanoma cell lines confirmed that low transduction efficiency was closely related to deficiency of the adenoviral receptor. To achieve CAR-independent gene transfer via Adv, we modified viral tropism via genetic alteration of the adenovirus type 5 (Ad5) fiber protein. Insertion of an Arg-Gly-Asp (RGD)-containing peptide in the HI loop of the fiber knob domain allowed the virus to use an alternative receptor, the integrin receptor, during the cell entry process. With this modified vector (Adv-F/RGD) transduction was increased 5- to 96-fold relative to a vector containing wild-type fiber (Adv-F/wt) in five human melanoma cells expressing integrins of the alpha(v)beta(3), alpha(v)beta(5) class, which are recognized by the RGD peptide motif. In contrast, no significant difference in transduction efficiency between Adv-F/RGD and Adv-F/wt was observed in 293 cells, which show high-level expression of CAR. In this study, we attempted to apply Adv-F/RGD for gene therapy for malignant melanoma. At the same multiplicity of infection, melanoma cells infected with Adv-F/RGD carrying human interleukin 2 (AxCAhIL2-F/RGD) produced a higher level of cytokine than cells infected with AxCAhIL2-F/wt. Treatment by intratumoral injection of AxCAhIL2-F/RGD was more effective than intratumoral injection of AxCAhIL2-F/wt in regressing tumors in a melanoma xenograft model. These data suggest that integrin-targeted adenoviral vectors may be a powerful tool in gene therapy for CAR-deficient melanomas.

 

2. Reduction of natural adenovirus tropism to the liver by both ablation of fiber-coxsackievirus and adenovirus receptor interaction and use of replaceable short fiber.

The initial recognition and binding of adenovirus vector to the host cell surface is mediated by interaction between the adenovirus fiber knob protein and its receptor, the coxsackievirus and adenovirus receptor (CAR). This natural tropism of adenovirus vector needs to be ablated in order to achieve targeted gene transfer. To this end, we noted that adenovirus serotype 40 (Ad40) contains two distinct long and short fibers; the short fiber is unable to recognize CAR, while the long fiber binds CAR. We generated adenovirus serotype 5-based mutants with chimeric Ad40-derived fibers, which were composed of either long or short shafts together with CAR binding or nonbinding knobs. The capacity of these adenovirus mutants for in vitro and in vivo gene transfer to liver cells was examined. In the case of primary human hepatocytes displaying a high expression level of CAR and alphav integrin, both CAR binding ability and fiber shaft length played important roles in efficient transduction. Most significantly, the high transduction efficiency observed in the liver and spleen following intravenous administration of adenovirus vector was dramatically reduced by both ablation of fiber-CAR interaction and the use of replaceable short fiber. In other tissues displaying a low level of transduction, no significant differences in transduction efficiency were observed among adenovirus vector mutants. Furthermore, incorporation of a 7-lysine-residue motif at the C-terminal end of CAR-nonbinding short fiber efficiently achieved transduction of target cells via the heparan-containing receptor. Our results demonstrated that the natural tropism of adenovirus in vivo is influenced not only by fiber-CAR interaction but also by fiber shaft length. Furthermore, our strategy may be useful for retargeting adenovirus to particular tumors and tissue types with specific receptors.

 

3. Pre-administration of angiopoietin-1 followed by VEGF induces functional and mature vascular formation in a rabbit ischemic model.

BACKGROUND: Angiopoietin-1 (Ang1) and vascular endothelial growth factor (VEGF) play important roles in vascular formation and maturation, suggesting that the combination of these two would be a promising therapy for ischemia. However, it remains unclear what the best schedule of administration of these cytokines might be. METHODS: Six experimental groups were used to prepare the rabbit ischemic hindlimb model following naked plasmid intramuscular administration as follows: empty vector (C), single gene (Ang1, A; VEGF, V), Ang-1 followed by VEGF (A - V), co-administration of Ang1 and VEGF (A + V), and VEGF followed by Ang1 (V - A). RESULTS: Thirty days after gene administration, A - V showed a significantly increased blood pressure and blood-flow recovery in the ischemic limb compared with the control group. Histological findings by alpha-smooth muscle-actin (alpha-SMA) staining revealed that the two combination groups had more mature vessels as compared with the control group. Significantly, A - V revealed the highest density of alpha-SMA-positive vessels compared with VEGF alone or Ang1 alone. Angiographic assessment revealed that A - V had a greater increased arterial diameter compared with VEGF alone. Edema, one of the major adverse effects induced by VEGF, was not found in A - V throughout the experiments, while VEGF alone and V - A showed severe edema induced by VEGF. CONCLUSIONS: The pre-administration of Ang1 followed by VEGF resulted in an improvement of hemodynamic status, an increased number of vessels covered with alpha-actin-positive mural cells, and prevention of VEGF-mediated edema. Thus, priming by Ang1 gene administration would be beneficial for therapeutic angiogenesis in VEGF gene therapy. Copyright 2003 John Wiley & Sons, Ltd.

 

4. Adenoviral-delivered angiopoietin-1 reduces the infarction and attenuates the progression of cardiac dysfunction in the rat model of acute myocardial infarction.

In acute myocardial infarction (AMI), prognosis and mortality rate are closely related to the infarct size and the progression of postinfarction cardiac failure. Angiogenic gene therapy has presented a new approach for the treatment of AMI. Angiopoietin-1 (Ang1) is a critical angiogenic factor for vascular maturation and enhances vascular endothelial growth factor (VEGF)-induced angiogenesis in a complementary manner. We hypothesized that gene therapy using Ang1 for AMI might promote angiogenesis cooperatively with intrinsic VEGF, since high concentrations of circulating VEGF have been reported in AMI. To evaluate our hypothesis, we employed a rat AMI model and adenoviral Ang1 (HGMW-approved gene symbol ANGPT1) gene transfer to the heart. A significant increase in capillary density and reduction in infarct sizes were noted in the infarcted hearts with adenoviral Ang1 gene treatment compared with control infarcted hearts treated with saline or adenoviral vector containing the beta-galactosidase gene. Furthermore, the Ang1 group showed significantly higher cardiac performance in echocardiography (55.0% of ejection fraction, P < 0.05 vs control) than the saline or adenoviral controls (36.0 or 40.5%, respectively) 4 weeks after myocardial infarction. The adenoviral delivery of Ang1 during the acute phase of myocardial infarction would be feasible to attenuate the progression of cardiac dysfunction in the rat model.

 

5. Efficient BMP2 gene transfer and bone formation of mesenchymal stem cells by a fiber-mutant adenoviral vector.

Strategies using mesenchymal stem cell (MSC)-mediated gene therapy have been developed to improve bone healing. However, transduction efficiency into MSCs by each vector is not always high. To overcome this problem, we used a modified adenoviral vector (Adv-F/RGD) with an RGD-containing peptide in the HI loop of the fiber knob domain of adenovirus type 5 (Ad5). Transduction efficiency into bone marrow-derived MSCs with Adv-F/RGD increased 12-fold compared with a vector containing the wild-type fiber (Adv-F/wt) by beta-galactosidase chemiluminescent assay. As a next step, we constructed AxCAhBMP2-F/RGD and AxCAhBMP2-F/wt carrying human bone morphogenetic protein 2 (BMP2). At the same multiplicity of infection, MSCs infected with AxCAhBMP2-F/RGD produced higher amounts of BMP2 than cells infected with AxCAhBMP2-F/wt, and also differentiated towards the osteogenic lineage more efficiently in vitro. Furthermore, using ex vivo gene transduction, we evaluated the potential for ectopic bone formation by the transduced MSCs in vivo. Transduction with AxCAhBMP2-F/RGD exhibited greatly enhanced new bone formation. These data suggest that Adv-F/RGD is useful for introducing foreign genes into MSCs and that it will be a powerful gene therapy tool for bone regeneration and other tissue engineering.

 

6. Ex vivo expansion of human umbilical cord hematopoietic progenitor cells using a coculture system with human telomerase catalytic subunit (hTERT)-transfected human stromal cells.

We developed a new human stromal cell line that could expand human hematopoietic progenitor/stem cells. Primary human bone marrow stromal cells were infected with retrovirus containing the human telomerase catalytic subunit (hTERT) gene, resulting in increased population doubling and the acquisition of cell immortalization. Characteristics of the hTERT-transduced stromal (hTERT-stromal) cells were identical with those of the primary stromal cells in terms of morphologic appearance and expression of surface antigens. Human cord blood (CB) CD34(+) cells were expanded by coculture with primary stromal or hTERT-stromal cells in the presence of stem cell factor, thrombopoietin, and Flk-2/Flt-3 ligand under serum-free condition. The degree of expansion of CD34(+) cells and total number of colony-forming units in culture (CFU-Cs) after 2 weeks' coculture with the hTERT-stromal cells were nearly the same as those after 2 weeks' coculture with primary stromal cells (CD34(+) cells, 118-fold +/- 8-fold versus 117-fold +/- 13-fold; CFU-Cs, 71-fold +/- 5-fold versus 67-fold +/- 5-fold of initial cell number). CB expansion on hTERT-stromal cells occurred at a similar rate through 7 weeks. In contrast, the rate of CB expansion on primary stromal cells had drastically declined at 7 weeks. In nonobese diabetic/severe combined immunodeficiency (SCID) mice, the degree of engraftment of SCID-repopulating cells that had been cocultured with hTERT-stromal cells for 4 weeks was significantly higher than that of precocultured CB cells. These results indicate that this hTERT-stromal cell line could be useful for ex vivo expansion of hematopoietic progenitor/stem cells and for analyzing the microenvironment of human bone marrow.

 

7. Indian hedgehog gene transfer augments hematopoietic support of human stromal cells including NOD/SCID-{beta}2m-/- repopulating cells.

Hematopoietic stem cells (HSCs) are a subset of bone marrow cells that are capable of self-renewal and of giving rise to all types of blood cells. However, the mechanisms involved in controlling the number and abilities of HSCs remain largely unknown. The Indian hedgehog (Ihh) signal has an essential role in inducing hematopoietic tissue during embryogenesis. We investigated the roles of the Ihh in coculture with CD34(+) cells and human stromal cells. Ihh mRNA was expressed in primary and telomerized human (hTERT) stromal cells, and its receptor molecules were detected in CD34(+) cells. Ihh gene transfer into hTERT stromal cells enhanced their hematopoietic supporting potential, which was elevated compared with control stromal cells, as indicated by the colony-forming units in culture (CFU-Cs) (26-fold +/- 2-fold versus 59-fold +/- 3-fold of the initial cell number; mixed colony-forming units [CFU-Mix's], 63-fold +/- 37-fold versus 349-fold +/- 116-fold). Engraftments of nonobese diabetic/severe combined immunodeficiency-ss(2)m(-/-) (NOD/SCID-ss(2)m(-/-)) repopulating cells (RCs) expanded on Ihh stromal cells were significantly higher compared with control coculture results, and engraftment was neutralized by addition of an antihedgehog antibody. Limiting dilution analysis indicated that NOD/SCID-ss(2)m(-/-) RCs proliferated efficiently on Ihh stromal cells, compared with control stromal cells. These results indicate that Ihh gene transfer could enhance the primitive hematopoietic support ability of human stromal cells.

 

8. BDNF gene-modified mesenchymal stem cells promote functional recovery and reduce infarct size in the rat middle cerebral artery occlusion model.

Examination of the clinical therapeutic efficacy of using bone marrow stromal cells, including mesenchymal stem cells (MSC), has recently been the focus of much investigation. MSC were reported to ameliorate functional deficits after stroke in rats, with some of this improvement possibly resulting from the action of cytokines secreted by these cells. To enhance such cytokine effects, we transfected telomerized human MSC with the BDNF gene using a fiber-mutant F/RGD adenovirus vector and investigated whether these cells contributed to improved functional recovery in a rat transient middle cerebral artery occlusion (MCAO) model. BDNF production by MSC-BDNF cells was 23-fold greater than that seen in uninfected MSC. Rats that received MSC-BDNF showed significantly more functional recovery than did control rats following MCAO. Specifically, MRI analysis revealed that the rats in the MSC-BDNF group exhibited more significant recovery from ischemia after 7 and 14 days. The number of TUNEL-positive cells in the ischemic boundary zone was significantly smaller in animals treated with MSC-BDNF compared to animals in the control group. These data suggest that MSC transfected with the BDNF gene may be useful in the treatment of cerebral ischemia and may represent a new strategy for the treatment of stroke.

 

9. Antitumor effect of genetically engineered mesenchymal stem cells in a rat glioma model.

The prognosis of patients with malignant glioma is extremely poor, despite the extensive surgical treatment that they receive and recent improvements in adjuvant radio- and chemotherapy. In the present study, we propose the use of gene-modified mesenchymal stem cells (MSCs) as a new tool for gene therapy of malignant brain neoplasms. Primary MSCs isolated from Fischer 344 rats possessed excellent migratory ability and exerted inhibitory effects on the proliferation of 9L glioma cell in vitro. We also confirmed the migratory capacity of MSCs in vivo and showed that when they were inoculated into the contralateral hemisphere, they migrated towards 9L glioma cells through the corpus callosum. MSCs implanted directly into the tumor localized mainly at the border between the 9L tumor cells and normal brain parenchyma, and also infiltrated into the tumor bed. Intratumoral injection of MSCs caused significant inhibition of 9L tumor growth and increased the survival of 9L glioma-bearing rats. Gene-modification of MSCs by infection with an adenoviral vector encoding human interleukin-2 (IL-2) clearly augmented the antitumor effect and further prolonged the survival of tumor-bearing rats. Thus, gene therapy employing MSCs as a targeting vehicle would be promising as a new therapeutic approach for refractory brain tumor.

 

10. Adenovirus-mediated transfer of siRNA against survivin induced apoptosis and attenuated tumor cell growth in vitro and in vivo.

Gene targeting using short interfering RNA (siRNA) has become a common strategy to explore gene function because of its prominent efficacy and specificity. For the application of siRNA technology to gene therapy, however, still more efficient transduction of siRNA into target cells is needed. In this study, we developed an adenoviral vector harboring a tandem-type siRNA expression unit, in which sense and antisense strands composing the siRNA duplex were separately transcribed by two human U6 promoters. Targeting survivin, an antiapoptotic molecule widely overexpressed in malignancies but not detected in terminally differentiated adult tissues, this type of adenoviral vector (Adv-siSurv) successfully exerted a gene knockdown effect and induced apoptosis in HeLa, U251, and MCF-7 cells. These cancer cells, once infected with Adv-siSurv, displayed remarkably attenuated growth potential, both in vitro and in vivo. Moreover, intratumoral injection of Adv-siSurv significantly suppressed tumor growth in a xenograft model using U251 glioma cells. This novel modality may be a promising tool for cancer therapy.

 

******

 

Technology development for gene therapy:

 

Nakamura T, Sato K. and Hamada H.  Effective Gene Transfer to Human Melanomas via Integrin-Targeted Adenoviral Vectors.  Hum. Gene Ther.,13(5): 613-626, 2002.

 

Nakamura T, Sato K and Hamada H.  Reduction of natural adenovirus tropism to the liver by both ablation of fiber-Coxsackievirus and adenovirus receptor interaction and use of replaceable short fiber.  J. Virol., 77(4): 2512-2521, 2003.

 

Regenerative medicine and gene therapy for cardiovascular diseases:

 

Yamauchi, A, Ito, Y, Morikawa, M, Kobune, M, Huang, J, Sasaki, K, Takahashi, K, Nakamura, K, Dehari, H, Niitsu, Y, Abe, T and Hamada, H.  Pre-administration of angiopoietin-1 followed by VEGF induces functional and mature vascular formation in a rabbit ischemic model.  J. Gene Med., 5(11):994-1004, 2003.

 

Takahashi K, Ito Y, Morikawa M, Kobune M, Huang J, Tsukamoto M, Sasaki K, Nakamura K, Dehari H, Ikeda K, Uchida H, Hirai S, Abe T and Hamada H  Adenoviral delivered angiopoietin-1 reduces the infarction and attenuates the progression of cardiac dysfunction in the rat model of acute myocardial infarction.  Mol. Ther. 8(4):584-592, 2003.

 

Regenerative medicine using bone marrow stem cells:

 

Tsuda H., Wada T., Ito Y., Uchida H., Dehari H., Nakamura K., Sasaki K., Kobune M., Yamashita T. and Hamada H.  Efficient BMP2 gene transfer and bone formation of mesenchymal stem cells by a fiber-mutant adenoviral vector.  Mol. Ther., 7(3): 354-365, 2003.

 

Kawano Y, Kobune M, Yamaguchi M, Nakamura K, Ito Y, Sasaki K, Takahashi S, Nakamura T, Chiba H, Sato T, Matsunaga T, Azuma H, Ikebuchi K, Ikeda H, Kato J, Niitsu Y and Hamada H.  Ex vivo expansion of human umbilical cord hematopoietic progenitor cells using a coculture system with human telomerase catalytic subnit (hTERT)-transfected human stromal cells. Blood, 101(2): 532-540, 2003.

 

Kobune M, Ito Y, Kawano Y, Sasaki K, Uchida H, Nakamura K, Dehari H, Chiba H, Takimoto R, Matsunaga T, Terui T, Kato J, Niitsu Y, Hamada H.  Indian hedgehog gene transfer augments hematopoietic support of human stromal cells including NOD/SCID-{beta}2m-/- repopulating cells.  Blood. 2004 Apr 22 [Epub ahead of print] Blood in press 2004.

 

Kurozumi, K., Nakamura, K., Tamiya, T., Kawano, Y., Kobune, M., Hirai, S., Uchida, H., Sasaki, K., Ito, Y., Kato, K., Honmou, O., Houkin, H., Date, I., and Hamada, H.   BDNF gene-modified mesenchymal stem cells promote functional recovery and reduce infarct size in the rat middle cerebral artery occlusion model.  Mol. Ther.  9(2):189-97, 2004.

 

Cancer Gene Therapy and Immunothrapy

 

Nakamura K, Ito Y, Kawano Y, Kurozumi K, Kobune M, Tsuda H, Bizen A, Honmou O, Niitsu Y, and Hamada, H.   Anti-tumor effect of genetically engineered mesenchymal stem cells in a rat glioma model.  Gene Ther.  In press, 2004. 2004 May 13 [Gene Ther. , Epub ahead of print]

 

Uchida H, Tanaka T, Sasaki K, Kato K, Dehari H, Ito Y, Kobune M, Miyagishi M, Taira K, Tahara H, Hamada H.  Adenovirus-Mediated Transfer of siRNA against Survivin Induced Apoptosis and Attenuated Tumor Cell Growth in Vitro and in Vivo.  Mol Ther. 10(1):162-71, 2004.


 

RESEARCH SUMMARY 2001-2004

RESEARCH SUMMARY 1998-2000